Continued Iteration on Predictor Corrector Interior Point Method

Lilian Berti

Aurelio Oliveira

Carla Ghidini

イロト イポト イヨト イヨト

IMECC - UNICAMP

April, 2015

- Predictor Corrector Interior Point Method
- Continued Iteration
- Numerical Experiments
- Conclusion and Future Works

Linear Programming Problems

Primal Problem

 $\begin{array}{ll} \operatorname{Min} & c^T x\\ \text{s.t.} & Ax = b,\\ & x \ge 0. \end{array}$

Dual Problem

 $\begin{aligned} & \text{Max} \qquad b^T y \\ & \text{s.t.} \quad A^T y + z = c, \\ & z > 0. \end{aligned}$

Predictor Corrector Interior Point Method

The predictor corrector method consists of two directions:

Predictor direction

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \tilde{d}x \\ \tilde{d}y \\ \tilde{d}z \end{bmatrix} = \begin{bmatrix} r_p \\ r_d \\ r_a \end{bmatrix}$$

Corrector direction

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^t & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \overline{d}x \\ \overline{d}y \\ \overline{d}z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ r_2 \end{bmatrix},$$

where $r_2 = \mu e - (\tilde{D}x\tilde{D}z)e$, $\tilde{D}x = diag(\tilde{d}x)$ and $\tilde{D}z = diag(\tilde{d}z)$.

Predictor Corrector Interior Point Method

Predictor direction

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \tilde{d}x \\ \tilde{d}y \\ \tilde{d}z \end{bmatrix} = \begin{bmatrix} r_p \\ r_d \\ r_a \end{bmatrix}.$$

Eliminating $\tilde{d}z$, we get the augmented system:

$$\begin{bmatrix} -D^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \tilde{d}x \\ \tilde{d}y \end{bmatrix} = \begin{bmatrix} r_d - X^{-1}r_a \\ r_p \end{bmatrix},$$

where $D = Z^{-1}X$. Eliminating $\tilde{d}x$

Predictor Corrector Interior Point Method

Symetric positive definite normal equations system

$$ADA^T \tilde{d}y = AD(r_d - X^{-1}r_a) + r_p.$$

Other directions:

$$\begin{split} \tilde{d}x &= D(A^T \tilde{d}y - r_d + X^{-1} r_a), \\ \tilde{d}z &= X^{-1} (r_a - Z \tilde{d}x). \end{split}$$

Predictor Corrector Interior Point Method

The predictor corrector direction is given by $d = \tilde{d} + \bar{d}$ and it can be interpreted as the following linear system solution:

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^t & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} dx \\ dy \\ dz \end{bmatrix} = \begin{bmatrix} r_p \\ r_d \\ r_s \end{bmatrix},$$

where $r_s = r_a + r_2$.

Predictor Corrector Interior Point Method

Predictor corrector direction:

- Solve two linear systems at each iteration with the same *ADA^T* matrix.
- The *ADA^T* matrix is symetric positive definite.
- Cholesky factorization is used to solve the linear systems.

Continued directions Moderated direction Simple direction Update approaches

Continued Iteration

The continued iteration is a approach proposed and incorporated on predictor corrector interior point method in order to:

- reduce the number of iterations;
- reduce the running time.

A new direction \hat{d} is computed: the continued direction.

Continued directions Moderated direction Simple direction Update approaches

Continued directions

Motivation

$$r_p^{k+1} = (1 - \alpha_P) r_p^k,$$

 $r_d^{k+1} = (1 - \alpha_D) r_d^k,$

We propose the continued directions \hat{d} to increase α_P and α_D , reducing the infeasibilities, if $\alpha_P < 1$ and/or $\alpha_D < 1$.

Continued directions Moderated direction Simple direction Update approaches

Continued directions

The blocking components in the directions (dx, dz) are given by:

$$i = \arg\min_t \{-\frac{x_t}{dx_t} | x_t + dx_t \le 0\},\$$

$$j = \arg\min_t \{-\frac{z_t}{dz_t} | z_t + dz_t \le 0\}.$$

- If there is the blocking component *i*, then $\alpha_P < 1$;
- If there is the blocking component *j*, then $\alpha_D < 1$;

Continued directions Moderated direction Simple direction Update approaches

Continued directions

We compute \hat{d} , with:

• Smallest possible predictor corrector direction (d) change.

Allowing:

- Increase α_P and α_D for all direction components that do not block.
- At the same time, keep the maximum value of the stepsize for the blocking components in α_P and α_D . All proposed directions have $\hat{d}x_i = 0$ and/or $\hat{d}z_j = 0$.

Continued directions Moderated direction Simple direction Update approaches

Continued directions

Two continued directions are proposed

- Moderated direction;
- Simple direction.

Continued directions Moderated direction Simple direction Update approaches

Moderated direction

The moderated direction \hat{d} have to approximately satisfy the predictor corrector direction linear system:

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^t & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} \hat{d}x \\ \hat{d}y \\ \hat{d}z \end{bmatrix} \simeq \begin{bmatrix} r_p \\ r_d \\ r_s \end{bmatrix},$$

where

$$\hat{d}x_i = 0$$

and / or
 $\hat{d}z_j = 0.$

To determine the moderated direction is necessary to solve an additonal linear system.

Continued directions Moderated direction Simple direction Update approaches

Moderated direction

We formulate a subproblem that determines dx, such that the change from the predictor corrector direction dx is the lowest possible:

min
$$\frac{1}{2} \| D^{-\frac{1}{2}} \hat{d}x - D^{-\frac{1}{2}} dx \|^2$$

s.t $A\hat{d}x = r_p$
 $\hat{d}x_i = \beta_a$ and / or $\hat{d}x_j = \beta_b$,

where $D = Z^{-1}X$, $\hat{d}x$ and $dx \in \mathbb{R}^n$, $\beta_a = 0$ and $\beta_b = -x_j + \frac{\mu}{z_j}$.

Continued directions Moderated direction Simple direction Update approaches

Moderated direction

Subproblem solution:

$$\hat{d}x = dx - DA^T v - \alpha d_{ii}e_i - \gamma d_{jj}e_j,$$

where

$$\begin{split} v &= -\alpha d_{ii}B^{-1}A_i - \gamma d_{jj}B^{-1}A_j, \\ \alpha &= \frac{(dx_i - \beta_a) + \gamma d_{ii}d_{jj}A_i^TB^{-1}A_j}{d_{ii}(1 - diiA_i^TB^{-1}A_i)}, \\ \gamma &= \frac{(dx_j - \beta_b)(1 - d_{ii}A_i^TB^{-1}A_i) + (dx_i - \beta_a)d_{jj}A_i^TB^{-1}A_j}{d_{jj}\left[(1 - d_{jj}A_j^TB^{-1}A_j)(1 - d_{ii}A_i^TB^{-1}A_i) - d_{ii}d_{jj}(A_i^TB^{-1}A_j)^2\right]}, \\ B &= ADA^T. \end{split}$$

Continued directions Moderated direction Simple direction Update approaches

Moderated direction

Given $\hat{d}x$, we compute the other directions:

$$\hat{d}z = X^{-1}(r_a - Z\hat{d}x).$$

 $A^t\hat{d}y = r_d - \hat{d}z.$

To take advantage existing Cholesky factorization, consider $D^{\frac{1}{2}}A^{t}\hat{d}y = D^{\frac{1}{2}}(r_{d} - \hat{d}z)$. From normal equations system, we get:

$$\hat{d}y = (ADA^t)^{-1}AD(r_d - \hat{d}z).$$

ヘロン スポン イヨン イヨン

Continued directions Moderated direction Simple direction Update approaches

Simple direction

Compute

$$\hat{d}x^k = \begin{cases} dx^k - dx_i^k e_i, & \text{if exists the blocking component } i; \\ dx^k, & \text{otherwise,} \end{cases}$$

 $\hat{d}z^k = \begin{cases} dz^k - dz_j^k e_j, & \text{if exists the blocking component } j; \\ dz^k, & \text{otherwise,} \end{cases}$

 $\hat{d}y^k = dy^k.$

where e_i and e_j are canonical vector.

It is not necessary to solve additional linear systems.

ヘロン 人間 とくほどう ほどう

Continued directions Moderated direction Simple direction Update approaches

Update approaches

The continued direction can be applied in two different approaches:

• Early approach:

$$\hat{x}^{k+1} = x^k + \hat{\alpha}_P(\hat{d}x^k + dx^k), (\hat{y}^{k+1}, \hat{z}^{k+1}) = (y^k, z^k) + \hat{\alpha}_D(\hat{d}y^k + dy^k, \hat{d}z^k + dz^k).$$

Before a complete predictor corrector method iteration.

Delayed approach

$$\hat{x}^{k+1} = x^{k+1} + \bar{\alpha}_P \hat{d} x^k,$$

$$(\hat{y}^{k+1}, \hat{z}^{k+1}) = (y^{k+1}, z^{k+1}) + \bar{\alpha}_D (\hat{d} y^k, \hat{d} z^k).$$

After a complete predictor corrector method iteration.

Continued directions Moderated direction Simple direction Update approaches

Criteria to applied the continued iteration

The continued iteration is applied if:

1. At least one blocking component exists;

$$2. \left\| \begin{array}{c} \hat{r}_{p}^{k+1} \\ \hat{r}_{d}^{k+1} \\ \hat{r}_{a}^{k+1} \end{array} \right\|_{2} < \omega_{1} \left\| \begin{array}{c} r_{p}^{k+1} \\ r_{d}^{k+1} \\ r_{a}^{k+1} \end{array} \right\|_{2},$$

where $\omega_1 \in (0, 1)$.

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

イロト イポト イヨト イヨト

Numerical Experiments

The continued iteration in the two approaches are implemented in C language and incorporated into the PCx code.

The numerical experiments are performed in a Intel Core i7 processor, 8 GB RAM and Linux Operating System.

In addition, the continued iteration is not applied in the last iterations, since by the experiments it does not presents good behavior near an optimal solution.

Test Problems

Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

イロト イヨト イヨト イヨト

Netlib set of problems

Problem	Dimension				
	Rows	Columns			
DFL001	5984	12143			
MAROS-R7	2152	7440			
PILOT87	1971	6373			
STOCFOR3	15362	22228			

Test Problems

Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Kennington set of problems

Problem	Dimension					
	Rows	Columns				
CRE-B	5336	36382				
CRE-D	4102	28601				
KEN11	10085	16740				
KEN13	22534	36561				
KEN18	78862	128434				
OSA-07	1081	25030				
OSA-14	2300	54760				
OSA-30	4313	104337				
OSA-60	10243	243209				

Test Problems

Kennington set of problems

Problem	Dimension					
	Rows	Columns				
PDS06	9156	28472				
PDS10	15648	48780				
PDS20	38722	106180				
PDS30	47968	156042				
PDS40	64276	214385				
PDS50	80339	272513				
PDS60	96514	332862				
PDS70	111896	386238				
PDS80	126120	430800				
PDS90	139752	471538				
PDS100	152300	498530				

Brazilian Workshop Interior Point Methods

(ロ) (部) (ほ) (ほ) Continued Iteration on Predictor Corrector Interior Point Method

э

Test Problems

Qaplib set of problems

Problem	Dimension				
	Rows	Columns			
CHR25A	8149	15325			
CHR22B	5587	10417			
ELS19	4350	13186			
KRA30A	18059	85725			
KRA30B	18059	85725			
SCR15	2234	6210			
SCR20	5079	15980			
ROU20	7359	37640			
STE36A	27683	131076			
STE36B	27683	131076			
STE36C	27683	131076			

Brazilian Workshop Interior Point Methods

(ロ) (部) (日) (日) Continued Iteration on Predictor Corrector Interior Point Method

э

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

イロト イポト イヨト イヨト

Methods comparison

- EMD: PCx with early approach and moderated direction.
- **DMD:** PCx with delayed approach and moderated direction.

PCx without multiple centrality corrections.

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

Comparison among PCx, EMD and DMD

Problem		PCx	EMD)	DMD		
	k	time(s)	k	ic	time(s)	k	ic	time(s)
DFL001	56	18,34	55	7	18,35	54	11	18.06
OSA-30	24	0.96	24	11	1.17	23	17	1.15
OSA-60	33	4.02	29	7	4.42	24	17	4.04
PDS20	55	149.65	54	7	148.40	50	14	40.09
PDS30	67	448.41	62	15	419.09	60	20	407.18
PDS40	66	1223.58	63	18	1175.10	64	21	1197.03
PDS70	75	6298.36	71	21	5984.94	71	29	5999.03
PDS80	74	8890.05	72	18	8669.56	71	26	8579.01
PDS90	76	11275.48	73	17	10853.37	72	28	10730.21
PDS100	78	12841.34	75	19	12377.36	75	23	12398.67
CHR25A	28	11.49	28	0	11.76	26	3	10.97
CHR22B	27	4.59	28	1	4.88	27	3	4.72
ELS19	26	33.48	26	0	34.04	25	6	32.57
KRA30A	26	3704.38	26	1	3719.07	25	7	3585.78
KRA30B	27	3841.13	27	0	3856.48	27	8	3861.80
STE36A	32	13191.43	32	0	13212.59	32	3	13278.79
STE36B	31	12801.62	31	0	12815.26	31	3	12872.10
STE36C	31	12808.24	31	0	12822.19	30	5	12471.58
TOTAL	1377	93742.60	1354	330	92360.26	1315	500	91633.48
REDUCTION			23		1382.34	62		2109.12

Continued Iteration on Predictor Corrector Interior Point Method

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

イロト イポト イヨト イヨト

Comparison among PCx, EMD and DMD

Number of iterations

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

イロト イポト イヨト イヨト

Comparison among PCx, EMD and DMD

Time

Test Problems **Comparison among PCx, EMD and DMD.** Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

イロト イポト イヨト イヨト

Methods comparison

- **ESD:** PCx with early approach and simple direction.
- **DSD:** PCx with delayed approach and simple direction.

PCx without multiple centrality corrections.

Test Problems Comparison among PCx, EMD and DMD. **Comparison among PCx, ESD and DSD** Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

Comparison among PCx, ESD and DSD

Problem		PCx	ESD		DSD			
	k	time(s)	k	ic	time(s)	k	ic	time(s)
DFL001	56	18.34	50	25	16.51	54	25	17.65
OSA-30	24	0.96	23	12	1.05	25	19	1.10
OSA-60	33	4.02	27	15	4.02	25	19	3.89
PDS20	55	149.65	54	19	147.62	50	14	139.50
PDS30	67	448.41	59	17	398.52	59	21	398.01
PDS40	66	1223.58	65	23	1209.27	65	22	1202.23
PDS70	75	6298.36	73	25	6145.71	72	29	6050.92
PDS80	74	8890.05	71	22	8550.29	70	31	8425.37
PDS90	76	11275.48	73	23	10851.90	70	28	10408.12
PDS100	78	12841.34	74	20	12213.38	73	24	12044.59
CHR25A	28	11.49	26	4	10.76	25	10	10.34
CHR22B	27	4.59	27	5	4.60	26	10	4.42
KRA30A	26	3704.38	26	2	3716.87	24	10	3450.69
KRA30B	27	3841.13	27	0	3855.38	26	10	3719.29
STE36A	32	13191.43	32	0	13251.88	32	12	13244.98
STE36B	31	12801.62	31	0	12848.64	31	13	12843.80
STE36C	31	12808.24	31	0	12850.14	29	14	12056.52
TOTAL	1377	93742.60	1330	437	92220.38	1315	590	90195.69
REDUCTION			47		1522.22	62		3546.91

Continued Iteration on Predictor Corrector Interior Point Method

Test Problems Comparison among PCx, EMD and DMD. **Comparison among PCx, ESD and DSD** Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

イロト イポト イヨト イヨト

Comparison among PCx, ESD and DSD

Number of iterations

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

イロン イロン イヨン

Comparison among PCx, ESD and DSD

Time

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

Comparison among PCx, EMD, DMD, ESD and DSD

Number of iterations

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

Comparison among PCx, EMD, DMD, ESD and DSD

Time

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

イロト イポト イヨト イヨト

Methods comparison

- PCx-MC: PCx with multiple centrality corrections.
- DSD-MC: PCx-MC with delayed approach and simple direction.

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

ヘロト 人間 とくほとく ほとう

Comparison between PCx-MC and DSD-MC

Problem	PCx-MC			ESD-MC		
	k	mc	time(s)	k	ic	time(s)
DFL001	45	3	15.26	49	8	16.42
OSA-14	25	0	0.39	22	8	0.40
OSA-30	24	0	0.97	23	10	1.02
OSA-60	33	0	4.04	28	5	3.95
PDS20	43	4	126.81	41	3	121.93
PDS30	45	5	316.73	43	2	303.24
PDS40	50	7	961.21	50	4	951.09
PDS70	54	10	4648.39	56	3	4798.71
PDS80	51	10	6283.01	51	1	6278.06
PDS90	52	10	7875.59	51	1	7718.6
PDS100	55	10	9211.17	54	4	9049.76
CHR25A	23	3	9.85	22	1	9.45
CHR22B	22	2	3.94	21	1	3.80
KRA30A	19	10	2770.35	18	1	2630.97
KRA30B	21	10	3045.86	21	0	3043.36
STE36A	23	10	9647.40	23	0	9654.27
STE36B	23	10	9668.41	23	0	9669.37
STE36C	23	10	9662.74	23	2	9664.02
TOTAL	1092	167	69260.08	1077	135	68973.01
REDUCTION				15		287.07

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

イロト イポト イヨト イヨト

Comparison between PCx-MC and DSD-MC

Number of iterations

Test Problems Comparison among PCx, EMD and DMD. Comparison among PCx, ESD and DSD Comparison among PCx, EMD, DMD, ESD and DSD Comparison between PCx-MC and DSD-MC

イロト イポト イヨト イヨト

Comparison between PCx-MC and DSD-MC

Time

Conclusions Future Works

- The continued iteration in the early and delayed approaches are present with moderated and simple directions.
- Numerical results show that:
 - DSD had better performance them EMD, DMD, ESD and PCx.
 - DSD-MC has better performance than PCx-MC on number of iterations, however the total time difference is small.

Conclusions Future Works

- Search other criteria to apply the continued iteration.
- Study new continued directions.
- More experiments with large-scale problems.